ó (f – g)(x) = f(x) – g(x)
= (x2 – 2x) – (x2
+ 1)
= x2 – x2
– 2x – 1
= - 2x – 1
= - (2x + 1)
Kunci : B
ó f(x) = 2x2 + 5x + 2
ó g(x) = 3x – 2
ó (f x g)(– 1) = (2x2 + 5x + 2).(3x – 2)
= 6x3 – 4x2 + 15x2 – 10x + 6x – 4
= 6x3 + 11x2 – 4x – 4
= 6(– 1)3 + 11(– 1)2 – 4(– 1) – 4
= - 6 + 11
= 5
ó f(x) = 3x + 5
ó g(x) = x – 3
ó (fog)(x) = f(g(x))
= 3x + 5
= 3(x – 3) + 5
= 3x – 9 + 5
= 3x – 4
ó (fog)(x) = 4x + 5
ó f(g(x))(x) = 4x + 5
ó 4(g(x)) + 1 = 4x + 5
ó 4(g(x)) = 4x + 5 – 1
ó g(x) = x + 1
ó (gof)(x) = g(f(x))
= 2x2 – 3
= 2(3x – 1)2 – 3
= 2(9x2 – 6x + 1) –
3
= 18x2 – 12x + 2 – 3
= 18x2 – 12x – 1
Kunci : E
Pembahasan :
Maka substitusikan nilai x = 3,
Kunci : D
Soal : 9
Pembahasan :
ó f(x) = 2x – 1
ó (gof)(x) = 4x2
– 10x + 5
ó g(– 1) = …
Kunci : D
Soal : 10
Pembahasan :
ó (fog)(x) = f(g(x))
= 2p + 8
ó (gof)(x) = g(f(x))
= 3x – 6
= 3(2p + 8) – 6
= 6p + 24 – 6
= 6p + 18
ó 2p + 8 = 6p + 18
2p – 6p = 18 – 8
– 4p = 10
p = - 5/2
Kunci : A
Uraian :
Soal : 11
Pembahasan :
Bagian a)
Terlebih dahulu kita selesaikan g(h(x)),
ó g(h(x)) = 2x
= 2(x + 3)
= 2x + 6
ó (fogoh)(x) = f(g(h(x)))
= 2x2 – 1
Bagian b)
ó (fogoh)(– 1) = 8x2 + 48x + 71
Maka,
Soal : 15
Pembahasan :