ó (f – g)(x) = f(x) – g(x)
                   = (x2 – 2x) – (x2
+ 1) 
                   = x2 – x2
– 2x – 1 
                   = - 2x – 1 
= - (2x + 1)
Kunci : B
ó f(x) = 2x2 + 5x + 2
ó g(x) = 3x – 2
ó (f x g)(– 1) = (2x2 + 5x + 2).(3x – 2)
= 6x3 – 4x2 + 15x2 – 10x + 6x – 4
= 6x3 + 11x2 – 4x – 4
= 6(– 1)3 + 11(– 1)2 – 4(– 1) – 4
= - 6 + 11
= 5
ó f(x) = 3x + 5
ó g(x) = x – 3
ó (fog)(x) = f(g(x))
= 3x + 5
= 3(x – 3) + 5
= 3x – 9 + 5
= 3x – 4
ó (fog)(x) = 4x + 5
ó f(g(x))(x) = 4x + 5
ó 4(g(x)) + 1 = 4x + 5
ó 4(g(x)) = 4x + 5 – 1
ó g(x) = x + 1
ó (gof)(x) = g(f(x)) 
                = 2x2 – 3 
                = 2(3x – 1)2 – 3 
                = 2(9x2 – 6x + 1) –
3 
                = 18x2 – 12x + 2 – 3
                = 18x2 – 12x – 1 
Kunci : E 
Pembahasan : 
Maka substitusikan nilai x = 3,
Kunci : D
Soal : 9
Pembahasan : 
ó       f(x) = 2x – 1 
ó (gof)(x) = 4x2
– 10x + 5 
ó g(– 1) = …
Kunci : D
Soal : 10
Pembahasan : 
ó (fog)(x) = f(g(x)) 
                = 2p + 8 
ó (gof)(x) = g(f(x)) 
                = 3x – 6 
                = 3(2p + 8) – 6 
                = 6p + 24 – 6 
                = 6p + 18 
ó  2p + 8 = 6p + 18 
    2p – 6p = 18 – 8
        – 4p = 10
             p = - 5/2  
 
Kunci : A
Uraian :
Soal : 11
Pembahasan :
Bagian a) 
Terlebih dahulu kita selesaikan g(h(x)),
ó g(h(x)) = 2x
               = 2(x + 3) 
               = 2x + 6 
ó (fogoh)(x) = f(g(h(x)))
                    = 2x2 – 1 
Bagian b) 
ó (fogoh)(– 1) = 8x2 + 48x + 71
Maka, 
Soal : 15
Pembahasan :










