This is default featured slide 1 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 2 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 3 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 4 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 5 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

Senin, 16 September 2024

16 Contoh Soal Fungsi Komposisi

Fungsi komposisi merupakan fungsi penggabungan dua jenis fungsi seperti fungsi f(x) dan g(x) yang disimbolkan “o”.

 

Sifat – sifat komposisi Fungsi :
·        (fog)(x) ≠ (gof)(x)
·        (fo(goh))(x) = ((fog)oh)(x)

 

Soal : 1

Jika f : R à R dengan f(x) = x – 4 dan g:R à R dengan g(x) = x2 + 1. Tentukan (fog)(x – 3).

A.  4x2 – 6x + 6             D. x2 – 6x + 6

B.  3x2 + 6x – 6             E. x2 + 6x – 6

C.  2x2 – 6x + 6

 

Pembahasan :

 

ó f(x) = x – 4

ó g(x) = x2 + 1

ó (fog)(x) = (x2 + 1) – 4

ó (fog)(x) = x2 – 3

ó (fog)(x – 3) = (x – 3)2 – 3

ó (fog)(x – 3) = (x2 – 6x + 9) – 3

ó (fog)(x – 3) = x2 – 6x + 6

 

Kunci : D

 

Soal : 2

Fungsi f:R à R dimana f(x) = 2x – 1 dan g(x) = x2 + 3. Tentukan (fog)(x).

A.  x2 – 5               D. 2x2 + 5

B.  x2 + 5                      E. 3x2 – 5

C.  2x2 – 5  

 

Pembahasan :

 

ó f(x) = 2x – 1

ó g(x) = x2 + 3

ó (fog)(x) = 2x – 1

ó (fog)(x) = 2(x2 + 3) – 1

                = 2x2 + 6 – 1

                = 2x2 + 5

 

Kunci : D


 

Soal : 3

Diketahui fungsi f(x) = 6x – 3, g(x) = 5x + 4 dan (fog)(a) = 81. Maka nilai a sama dengan …

A.  1                      D. 4

B.  2                      E. 5

C.  3

 

Pembahasan :

 

ó f(x) = 6x – 3

ó g(x) = 5x + 4

ó (fog)(x) = 6x – 3

                = 6(5x + 4) – 3

                = 30x + 24 – 3

                = 30x + 21

 

Substitusikan nilai x = a,

 

ó (fog)(a) = 30x + 21

            81 = 30a + 21

     81 – 21 = 30a

            60 = 30a

              a = 2

 

Kunci : B

 

Soal : 4

Fungsi – fungsi f, g, dan h adalah pemetaan dari R à R. Dengan f(x) = x + 4, g(x) = 2 – x, dan h(x) = x2 – x + 1. Tentukan fungsi komposisi ((fog)oh)(x) = …

A.  2x2 + x – 5                     D. – x2 + x + 5

B.  2x2 – x + 5                     E. x2 + x + 5

C.  – x2 + x – 5

 

Pembahasan :

 

ó f(x) = x + 4

ó g(x) = 2 – x

ó h(x) = x2 – x + 1

ó (fog)(x) = x + 4

                = (2 – x) + 4

                = 6 – x

 

ó ((fog)oh)(x) = 6 – x

                      = 6 – (x2 – x + 1)

                      = 6 – 1 – x2 + x

                      = – x2 + x + 5

 

Kunci : D

 

Soal : 5

Diketahui (fog)(x) = 2x + 4 dan f(x) = x – 2. Tentukan fungsi g(x).

A.  2x + 6              D. x + 6

B.  3x + 6              E. x – 6

C.  4x + 6

 

Pembahasan :

 

ó f(x) = x – 2

ó (fog)(x) = 2x + 4

     2x + 4 = g(x) – 2 

         g(x) = 2x + 4 + 2

         g(x) = 2x + 6

 

Kunci : A

 

Soal : 6

Jika f(x) = 3x + 2 dan g(x) = 4x2. Maka (fog)(x) dan (gof)(x) …

 

Pembahasan :

 

ó (fog)(x) = 3x + 2

                = 3(4x2) + 2

                = 12x2 + 2

 

ó (gof)(x) = 4x2

                = 4(3x + 2)2

                = 4(9x2 + 12x + 4)

                = 36x2 + 48x + 16

 

Soal : 7

Diketahui f(x) = 2x dan g(x) = x – 3.

Tentukan :

a.  (gof)(x)

b.  (fog)(x)

 

Pembahasan :

 

Bagian a)

 

ó (gof)(x) = x – 3

                = (2x) – 3

                = 2x – 3

 

Bagian b)

 

ó (fog)(x) = 2x

                = 2(x – 3)

                = 2x – 6

Soal : 8

Diketahui f(x) = 3x + 4 dan g(x) = 3x. Tentukan nilai dari (fog)(2) = …

 

Pembahasan :

 

ó      f(x) = 3x + 4

ó      g(x) = 3x

ó (fog)(x) = 3x + 4

                = 3(3x) + 4

                = 9x + 4

 

Substitusikan x = 2,

 

ó (fog)(2) = 9(2) + 4

                = 22

 

Soal : 9

Diketahui f(x) = 3x, g(x) = 5 – 2x, dan h(x) = x + 2. Tunjukkan bahwa :

a.  (fog)(x) ≠ (gof)(x)

b.  (fo(goh))(x) = ((fog)oh)(x)

 

Pembahasan :

 

Bagian a)

 

ó (fog)(x) = 3x

                = 3(5 – 2x)

                = 15 – 6x

 

ó (gof)(x) = 5 – 2x

                = 5 – 2(3x)

                = 5 – 6x

 

Kesimpulan : (fog)(x) ≠ (gof)(x)

 

Bagian b)

 

ó (goh)(x) = 5 – 2(x + 2)

                 = 5 – 2x – 4

                 = 1 – 2x

 

Maka,

 

ó (fo(goh))(x) = 3x

                      = 3(1 – 2x)

                      = 3 – 6x

 

 

ó (fog)(x) = 3x

                = 3(5 – 2x)

                = 15 – 6x

 

Maka,

 

ó ((fog)oh)(x) = 15 – 6x

                      = 15 – 6(x + 2)

                      = 15 – 6x – 12

                      = 3 – 6x

 

Kesimpulan : (fo(goh))(x) = ((fog)oh)(x)

 

Soal : 10

Diketahui f(x) = x2 + 1 dan g(x) = 2x – 3, maka (fog)(x) = …

 

Pembahasan :

 

ó f(x) = x2 + 1

ó g(x) = 2x – 3

ó (fog)(x) = x2 + 1

                = (2x – 3)2 + 1

                = 4x2 – 12x + 9 + 1

                = 4x2 – 12x + 10

 

Soal : 11

Diketahui (fog)(x) = x + 4 dan g(x) = x – 2. Tentukan invers dari fungsi f(x).

 

Pembahasan :

 

ó       (fog)(x) = x + 4

ó        f(g(x)) = x + 4

ó       f(x – 2) = x + 4

ó f(x – 2 + 2) = x + 4 + 2

ó             f(x) = x + 6

 

Selanjutnya fungsi invers dari f(x).

 

ó     f(x) = x + 6

ó         y = x + 6

ó f – 1 (x) = x – 6

 

 

Soal : 12

Diketahui (fog)(x) = 2x + 4 dan f(x) = x – 2. Tentukan fungsi g(x).

 

Pembahasan :

 

ó (fog)(x) = 2x + 4

ó f(x) = x – 2

 

Misalkan g(x) = y

 

ó f(g(x)) = 2x + 4

ó     f(y) = x – 2

ó 2x + 4 = y – 2

ó         y = 2x + 6

ó     g(x) = 2x + 6

 

Soal : 13

Diketahui f(x) = x – 4 dan g(x) = x2 – 3x + 10. Tentukan fungsi komposisi gof(x).

 

Pembahasan :

 

ó f(x) = x – 4

ó g(x) = x2 – 3x + 10

ó (gof)(x) = x2 – 3x + 10

                = (x – 4)2 – 3(x – 4) + 10

                = x2 – 8x + 16 – 3x + 12 + 10

                = x2 – 11x + 38

 

Soal : 14

Diketahui f(x) = x + 2 dan g(x) = 2x – 4. Tentukan (gof) – 1 = …

 

Pembahasan :

 

ó f(x) = x + 2

ó g(x) = 2x – 4

ó (gof)(x) = g(f(x))

                = 2x – 4

                = 2(x + 2) – 4

                = 2x + 4 – 4

                = 2x

 

ó (gof) – 1 = ½ x

 

 

Soal : 15

Diketahui f(x) = x + 1 dan (fog)(x) = 3x2 + 4. Tentukan g(4) = …

 

Pembahasan :

 

Misalkan g(x) = y

 

ó f(x) = x + 1

ó (fog)(x) = 3x2 + 4

ó (fog)(x) = f(g(x))

ó 3x2 + 4 = x + 1

ó 3x2 + 4 = y + 1

ó          y = 3x2 + 3

ó      g(x) = 3x2 + 3

ó      g(4) = 3(4)2 + 3

ó      g(4) = 51

 

Soal : 16

Jika f(x) = 2x, g(x) = 3x – 1, dan h(x) = x2, maka (fogoh)(x) = …

 

Pembahasan :

 

ó (goh)(x) = 3x – 1

                 = 3(x2) – 1

                 = 3x2 – 1

 

Maka,

 

ó (fogoh)(x) = (fo(goh))(x)

ó                 = 2x

ó                 = 2(3x2 – 1)

ó                 = 6x2 – 2